Simultaneous saccharification and microbial lipid fermentation of corn stover by oleaginous yeast Trichosporon cutaneum.
نویسندگان
چکیده
Simultaneous saccharification and fermentation (SSF) is the most commonly practiced operation in lignocellulose bioconversion to avoid the sugar product inhibition to cellulase enzymes. In this study, for the first time SSF was tested on microbial lipid fermentation using the diluted acid pretreated and biodetoxified corn stover. The results show that SSF was effective than the separate hydrolysis and fermentation (SHF) on lipid accumulation of Trichosporon cutaneum CX1 cells in both the small scale (5L) and the enlarged scale (50 L) bioreactors. The solutions for the oxygen transfer and the lipid extraction in SSF practically worked well. The process parameters were optimized and the lipid yield obtained were 3.03 g/L in the 5L, and 3.23 g/L in the 50 L, respectively. The result also shows that the cellulase enzyme could be partially recycled in the SSF. The study provided a practical and efficient way for microbial lipid production from lignocellulose material.
منابع مشابه
Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum
BACKGROUND Biochemical conversion of lignocellulose hydrolysates remains challenging, largely because most microbial processes have markedly reduced efficiency in the presence of both hexoses and pentoses. Thus, identification of microorganisms capable of efficient and simultaneous utilization of both glucose and xylose is pivotal to improving this process. RESULTS In this study, we found tha...
متن کاملLipid production from corn stover by the oleaginous yeast Cryptococcus curvatus
BACKGROUND Microbial lipids produced from lignocellulosic biomass hold great promise for the biodiesel industry. These lipids usually consist of three major processes: pretreatment, enzymatic hydrolysis and lipid production. However, the conventional strategy of using biomass hydrolysates as the feedstock for lipid production suffers from low lipid coefficient and prohibitively high costs. More...
متن کاملAnalysis of metabolic fluxes for better understanding of mechanisms related to lipid accumulation in oleaginous yeast Trichosporon cutaneum.
Microbial fermentation for producing biodiesel from lignocellulosic hydrolysates is receiving increasing attention and attempts have been made to screen an oleaginous Trichosporon sp. with high lipid content and a strong tolerance to lignocellulose hydrolysates. In order to better understand mechanisms related to its lipid accumulation, metabolic flux analysis was performed under 5gL(-1) ammoni...
متن کاملSimultaneous saccharification and fermentation of ground corn stover for the production of fuel ethanol using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011.
Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn s...
متن کاملSingle cell oil production by Trichosporon cutaneum from steam-exploded corn stover and its upgradation for production of long-chain α,ω-dicarboxylic acids
BACKGROUND Single cell oil (SCO) production from lignocelluloses by oleaginous microorganisms is still high in production cost, making the subsequent production of biofuels inviable economically in such an era of low oil prices. Therefore, how to upgrade the final products of lignocellulose-based bioprocess to more valuable ones is becoming a more and more important issue. RESULTS Differently...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 118 شماره
صفحات -
تاریخ انتشار 2012